Math 16a Review Topics

Monday, December 7, 2020 9:28 PM

Start Recording!!

Optimization

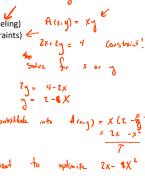
o example: find the minimum area of a rectangle with total perimeter 4

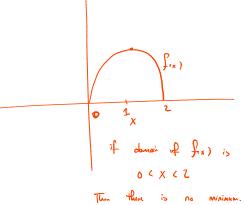
o determine the points on $y = x^2 + 1$ that are closest to (0,2)

o my general solution technique:

(1) determine the function we want to optimize (mathematical modeling) determine any constraints (domain constraints or variable constraints) \leftarrow

• reduce the problem to finding absolute extrema of a function.





• Maximization/minimization

o example: find absolute extrema of $f(x) = x^2$ on [-1,2]

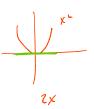
A(x) = 2 - 2x

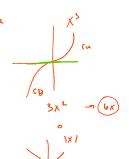
0 4 X 4 L

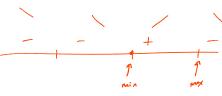
=> X= (

- o my general solution technique
 - take derivative, find where it is zero, or doesn't exist abo ded and web

 - - ☐ first derivative test (plug in points)

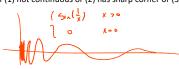






The derivative doesn't exists if (1) not continuous or (2) has sharp corner or (3)

rapidly oscillating

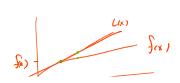


- o example: the radius of a sphere is growing at 1 meter per second, how fast is the volume changing?
- o my general solution:
 - find a relationship between all the variables
 - find the derivative using implicit differentiation
- implicit differentiation
 - example: find $\frac{dy}{dx}$ for $y^2 + x^2 = 1$
 - o solution
 - consider y as a function of x, rewrite as y(x)
 - take the derivative, remembering the chain rule
 - solve for y'(x)

$$y^{2}(x) + y^{2} = \frac{1}{4x} \left(y^{2}(x) + y^{2} \right) = \frac{1}{4x} \left(y^{2}(x) \right) + \frac{1}{4x} \left(x^{2} \right) = \frac{1}{4x} \left(y^{2}(x) + 2x \right) = \frac{1}{4x} \left(y^{2}(x)$$

 $\int_{-\infty}^{\infty} \frac{1}{1-x^{2}} \int_{-\infty}^{\infty} \frac{1}{1-x$ $V = \frac{3}{4} \pi \iota_{s}(f)$

- · linear approximation
 - \circ these problems are usually just **approximating** a function f, by a tangent line at a point
 - o there are several equivalent formula.



- \circ these problems are usually just **approximating** a function f, by a tangent line at a point
- o there are several equivalent formula.

$$L(x) = f(a) + f'(a)(x - a)$$

- example approximate $(8.05)^{\frac{1}{3}}$ • L'Hopital's rule
 - $\frac{f(x)}{a(x)}$ if $\lim_{x\to a} \underline{f(x)}$ and $\lim_{x\to a} g(x)$ both go to either zero or infinity o used to compute $\lim_{x\to a}$ $\begin{array}{ll} \circ & \text{used to compute } \lim_{x \to a} \frac{1}{dx^{o}} \text{ if } \lim_{x \to a} \frac{1}{dx^{o}} \text{ if } \lim_{x \to a} \frac{1}{dx^{o}} \frac{1}{dx^{o}} \text{ if } \lim_{x \to a} \frac{1}{dx^{o}} \frac{1}{dx^{o}} \frac{1}{dx^{o}} \text{ if } \lim_{x \to a} \frac{1}{dx^{o}} \frac{1}{dx^$

Asymptotes

- o horizontal asymptotes are found by $\lim_{x\to\pm\infty} f(x)$
- o vertical asymptotes are found when $\lim_{x\to a} f(x) = \pm \infty$ o oblique asymptotes are found when f(x) looks like a slanted line if we zoom out

Polynomial Division

- o go through an example
- o find the oblique asymptotes of $y = \frac{-3x^2+2}{x-1}$
- Tangent Lines to curves
 - o same as linear approximation

integrals

o integrals of
$$x^n, \frac{1}{x}, e^x, a^x, \cos(x), \sin(x), kf(x), f(x) \pm g(x)$$

-substitution
$$\frac{1}{3}$$

$$\circ \int_0^{\sqrt{\pi}} x \sin(x^2) \, dx$$
$$\circ \int x \sqrt{4 - x} \, dx$$

$$0 \int x\sqrt{4-x}dx$$

$$0 \int \frac{x^2+4}{x+2}dx - \frac{x^2+4}{x+2}dx$$

o
$$\frac{d}{dx}|x| = \operatorname{sgn}(x)$$

o $\frac{d}{dx}\ln|x| = \frac{d}{dx}\log(s(x)) \frac{1}{abs(x)}abs'(x) = \frac{\operatorname{sgn}(x)}{|x|} = \frac{1}{x}$

• module 4

- o concavity
- curve sketching
- · numerical integration

•
$$\int_a^b f(x) dx \approx \frac{b-a}{2n} f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)$$

• midpoint rule

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{n} f(x_{1}^{*}) + f(x_{2}^{*}) + \dots + f(x_{6}^{*})$$

left and right also have the same formula as above.

