Math 16a Review Topics

Monday, December 7, 2020 9:28 PM

e Start Recording!!

e Optimization [ ,_/‘\
o example: find the minimum area of a rectangle with total perimeter 4
=0 determine the points on y = x? + 1 that are closest to (0,2) “'A

o my general solution technique:
= determine the function we want to optimize (mathematical modeling)
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(1)= determine any constraints (domain constraints or variable constraints) €— ,
= reduce the problem to finding absolute extrema of a function. Zxe 13 = 1 Corsrint |
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e Maximization/minimization
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o example: find absolute extrema of f(x) = x% on [-1,2]
o my general solution technique
= take derivative, find where it is zero, or doesn't exist | sl dud ed e
= check each of these points Comtent dosn [
o second derivative test: if f'(xg) < 0 = max, if f”'(xg) > 0 = min
o first derivative test (plug in points)
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The derivative doesn't exists if (1) not continuous or (2) has sharp corner or (3)
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rapidly oscillating X e

¢ related rates
o example: the radius of a sphere is growing at 1 meter per second, how fast is the volume changing?
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o my general solution:
= find a relationship between all the variables

= find the derivative using implicit differentiation
« implicit differentiation v KHyted radis
o example: find 2 for y2 + x2 = 1 d g
P dx g)_/—__J —\lr) =97 Zeue) 4°
o solution ot I dt
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= consider y as a function of x, rewrite as y(x)
= take the derivative, remembering the chain rule

= solve for y'(x)
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* linear approximation ;ri )
o these problems are usually just approximating a function f, by a tangent line at a point
4?0
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o there are several equivalent formula.
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linear approximation

o these problems are usually just approximating a function f, by a tangent line at a point

o there are several equivalent formula.

* L0 = f@+ f@E - a)) e

o example approximate (8.05)3 ) O_A-” (1« {)
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o then this is just: lim,_,q %
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o we can do this over and over again.
Asymptotes

o horizontal asymptotes are found by lim,_, 4o, f(x)

o vertical asymptotes are found when lim,_,, f(x) = to

o oblique asymptotes are found when f(x) looks like a slanted line if we zoom out
Polynomial Division

o go through an example
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o used to compute lim,_,, if lim,_,, f(x) and lim,_,, g(x) both go to either zero or infinity
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o find the oblique asymptotes of y = o

Tangent Lines to curves
o same as linear approximation /

integrals
o integrals of ",%, e*,a*, cos(x),sin(x), kf (x), f(x) £ g(x)
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derivative of absolute value
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O concavity

o curve sketching
numerical integration
o Simpson's rule
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o Trapezoidal rule
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o midpoint rule
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o left and right also have the same formula as above.



